VLAN and IEEE 802.1Q standard

Pietro Nicoletti
www.studioreti.it
Copyright note

- These slides are protected by copyright and international treaties. The title and the copyrights concerning the slides (inclusive, but non only, every image, photograph, animation, video, audio, music and text) are the author’s (see Page 1) property.

- The slides can be copied and used by research institutes, schools and universities affiliated to the Ministry of Public Instruction and the Ministry of University and Scientific Research and Technology, for institutional purpose, not for profit. In this case there is not requested any authorization.

- Any other complete or partial use or reproduction (inclusive, but not only, reproduction on discs, networks and printers) is forbidden without written authorization of the author in advance.

- The information contained in these slides are believed correct at the moment of publication. They are supplied only for didactic purpose and not to be used for installation-projects, products, networks etc. However, there might be changes without notice. The authors are not responsible for the content of the slides.

- In any case there can not be declared conformity with the information contained in these slides.

- In any case this note of copyright may never be removed and must be written also in case of partial use.
Parallel independent LANs

- Need of separated parallel LANs for privacy and security purpose
 - \(n_{\text{LAN}} = n_{\text{Media}} + n_{\text{Equipment}} \) per any distribution point
 - Hardware waste
 - Maximum LAN separation
Parallel independent LANs example
Virtual LAN (VLAN)

- Possibility to realize virtually independent parallel LAN
 - Unique Physical infrastructure
 - LAN virtually or logically separated
- VLAN can be implemented
 - On a single switch
 - On entire extended LAN
- VLAN advantages
 - High flexibility
 - Hardware saving
Why VLAN

- Security or privacy purpose
 - Separated VLAN
 - No communication between VLAN
 - VLAN connection enough secure with Access-List configuration on router, Layer 3 Switch or Firewall
- To limit or reduce the broadcast domain
 - VLAN communication through router or Layer 3 Switch
VLAN Inter-Switch

- VLAN configuration on the switches
 - Need classify packet per VLAN
 - VLAN tagging
VLAN tagging

- Frame Tagging
 - Encapsulation technique
 - Ethernet, Token Ring or FDDI frame are encapsulated on VLAN frame
 - ISL (Inter Switch Link) Cisco proprietary solution

- Packet Tagging
 - The original Ethernet frame is modified by adding an header witch contain VLAN-ID
 - Technique adopted by IEEE 802.1Q standard
IEEE 802.1Q tagging

- Destination Address
- Source Address
- Length/Type = TPID
- Tag Control Information
- Client Length/Type
- MAC Client DATA
- PAD
- FCS

81-00
801.Q Tag

3 1
user priority CFI
VID (VLAN ID) - 12 bit

Defined on:
- IEEE 802.3ac
- IEEE 802.1p
- IEEE 802.1Q

© P. Nicoletti: see note pag. 2
Bridge 802.1Q

- Port State Information
- Ingress Rules
- Forwarding Process
- Filtering database
- Egress Rules
- Frame Transmission
- Frame Reception
IEEE 802.1Q characteristics

- Per port based VLAN assignment
- Unique spanning tree
- Multiple filtering database identified by FID (Filtering Identifier)
 - Can exist only one entry per MAC address on filtering database
 - A MAC Address may be present in different filtering database
Port-based VLAN

VLAN 11

Access link

Tagged frame

VLAN 24

Trunk link

VLAN 11

Tagged frame

Access link

VLAN 24
Equipment e Link type

- **Equipment:**
 - VLAN-Aware manage tagged and untagged frames
 - VLAN-Unaware don’t manage tagged frames

- **Access link:**
 - Receive and transmit Untagged frames
 - default port configuration on the switch

- **Trunk link:**
 - Receive and transmit Tagged frames
VLAN configuration on the switch

- 3 typical steps:
 - VLAN creation on the switch;
 - VLAN port association;
 - Trunk ports definition.
VLAN configuration example

Network before VLAN configuration

SW-A SW-C SW-B
Ports association before VLAN configuration

```
SW-C# show vlan brief

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>active</td>
<td>Fa0/1, Fa0/2, Fa0/3, Fa0/4, Fa0/5, Fa0/6, Fa0/7, Fa0/8, Fa0/9, Fa0/10, Fa0/11, Fa0/12, Fa0/13, Fa0/14, Fa0/15, Fa0/16, Fa0/17, Fa0/18, Fa0/19, Fa0/20, Fa0/21, Fa0/22, Fa0/23, Fa0/24, Fa0/25, Fa0/26, Fa0/27, Fa0/28, Fa0/29, Fa0/30, Fa0/31, Fa0/32, Fa0/33, Fa0/34, Fa0/35, Fa0/36, Fa0/37, Fa0/38, Fa0/39, Fa0/40, Fa0/41, Fa0/42, Fa0/43, Fa0/44, Fa0/45, Fa0/46, Fa0/47, Fa0/48, Gi0/1, Gi0/2</td>
</tr>
</tbody>
</table>
```
VLAN to be created
VLAN Creation

SW-C# **vlan database**
Switch(vlan)# **vlan 2 name Administration**
VLAN 2 added:
 Name: Amministrazione
Switch(vlan)# **vlan 3 name Selling**
VLAN 3 added:
 Name: Vendite
Switch(vlan)# **vlan 4 name test-1**
VLAN 4 added:
 Name: prova-1
Switch(vlan)# **vlan 5 name test-2**
VLAN 5 added:
 Name: prova-2
Switch(vlan)# **vlan 6 name test-3**
VLAN 6 added:
 Name: prova-3
Switch(vlan)# **vlan 100 name Production**
VLAN 100 added:
 Name: Produzione
SW-Prova(vlan)# **exit**
APPLY completed.
Exiting....
SW-C#
Ports VLAN association

SW-Prova(config)#int fastEthernet 0/12
SW-Prova(config-if)#switchport access vlan 100
Switch(config-if)#exit

SW-Prova(config)#int fastEthernet 0/16
SW-Prova(config-if)#switchport access vlan 2
SW-Prova(config-if)#exit

SW-Prova(config)#int fastEthernet 0/20
SW-Prova(config-if)#switchport access vlan 3
SW-Prova(config-if)#exit

SW-Prova(config)#int fastEthernet 0/24
SW-Prova(config-if)#switchport access vlan 4
SW-Prova(config-if)#exit

SW-Prova(config)#int fastEthernet 0/28
SW-Prova(config-if)#switchport access vlan 5
SW-Prova(config-if)#exit

SW-Prova(config)#int fastEthernet 0/32
SW-Prova(config-if)#switchport access vlan 6
SW-Prova(config-if)#exit
Ports and VLAN after switch configuration

```plaintext
SW-Prova# show vlan brief

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 default</td>
<td>active</td>
<td>Fa0/1, Fa0/2, Fa0/3, Fa0/4, Fa0/5, Fa0/6, Fa0/7, Fa0/8, Fa0/9, Fa0/10, Fa0/11, Fa0/36, Fa0/37, Fa0/38, Fa0/39, Fa0/40, Fa0/41, Fa0/42, Fa0/43, Fa0/44, Fa0/45, Fa0/46, Fa0/47, Fa0/48, Gi0/1, Gi0/2</td>
</tr>
<tr>
<td>2 Administration</td>
<td>active</td>
<td>Fa0/16, Fa0/17, Fa0/18, Fa0/19</td>
</tr>
<tr>
<td>3 Selling</td>
<td>active</td>
<td>Fa0/20, Fa0/21, Fa0/22, Fa0/23</td>
</tr>
<tr>
<td>4 test-1</td>
<td>active</td>
<td>Fa0/24, Fa0/25, Fa0/26, Fa0/27</td>
</tr>
<tr>
<td>5 test-2</td>
<td>active</td>
<td>Fa0/28, Fa0/29, Fa0/30, Fa0/31</td>
</tr>
<tr>
<td>6 test-3</td>
<td>active</td>
<td>Fa0/32, Fa0/33, Fa0/34, Fa0/35</td>
</tr>
<tr>
<td>100 Production</td>
<td>active</td>
<td>Fa0/12, Fa0/13, Fa0/14, Fa0/15</td>
</tr>
</tbody>
</table>
```
Trunk port static configuration

- Trunk port static configuration without implementation of GVRP protocol

```
SW-C(config)#interface GigabitEthernet 0/1
SW-C(config-if)#switchport mode trunk
SW-C(config-if)#switchport trunk allowed vlan add 1,2,5,6
SW-C(config-if)#exit
SW-C(config)#interface GigabitEthernet 0/2
SW-C(config-if)#switchport mode trunk
SW-C(config-if)#switchport trunk allowed vlan all
```
GVRP protocol

- Garp VLAN Registration Protocol (GVRP)
 - Use to register or cancel dynamically VLAN attribute on the switches
 - Participate to STP active topology
GVRP frame format

<table>
<thead>
<tr>
<th>DSAP</th>
<th>SSAP</th>
<th>Length</th>
<th>DSAP</th>
<th>SSAP Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast</td>
<td>Singlecast</td>
<td>MAC bridge Address</td>
<td>XY</td>
<td>042H</td>
</tr>
<tr>
<td>01-80-C2-00-00-21</td>
<td>042H</td>
<td>042H</td>
<td>XID</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protocol Identifier:</th>
<th>00-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute Type:</td>
<td>00-01</td>
</tr>
<tr>
<td>Attribute Length:</td>
<td>04</td>
</tr>
<tr>
<td>Attribute Event</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>VLAN ID</td>
<td></td>
</tr>
</tbody>
</table>

Attribute List

<table>
<thead>
<tr>
<th>Attribute Length:</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute Event</td>
<td>VLAN ID</td>
</tr>
</tbody>
</table>

Attribute 1

<table>
<thead>
<tr>
<th>Attribute Length:</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute Event</td>
<td>VLAN ID</td>
</tr>
</tbody>
</table>

Attribute n

<table>
<thead>
<tr>
<th>Attribute Length:</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute Event</td>
<td>VLAN ID</td>
</tr>
</tbody>
</table>

End Mark

| 00 |

| 1÷2 |
| 3 |
| 4 |
| 5 |
| 6÷7 |

- 0 = LeaveALL
- 1 = JoinEmpty
- 2 = JoinIn
- 3 = Leave Empty
- 4 = LeaveIN
- 5 = Empty